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FORMALISM/THEORY

BACKGROUND

Following Tatarskiil, we consider the angular jitter measured by
a lens type antenna where the scattered fields are given by the Rytov
approximation. The use here of the Rytov approximation, which is a form
of weak scatter theory, is justified in Appendix A. There it is shown
that for the propagation paths considered, the estimated amplitude fluctu-
ations are small compared to the level at which weak fluctuation theory
breaks down. The development of a general equation capable of predicting
results for the variation of al) parameters of interest will be described.
A Fortran code was written and validated to obtain results from this
general formula.

The modeling geometry is shown in Figure 1. The radar antenna
is immersed in a turbulent layer of dust and is tracking a target in
angle. The angle estimator is assumed to correspond to the angular posi-
tion of the target image intensity pattern in the image plane of the
antenna. Due to the fluctuations induced by the turbulent propagation
medium, the position of the target image will fluctuate. Tatarskiil has
considered this problem for the case of an aperture with uniform illumina-
tion. We have modified his derivation to include the effect of an aperture
amplitude taper.

From Appendix B, the mean squared deviation in the angle-of-

arrival (in one plane only) is
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Figure 1. Modeling geometry.




01 ] dooilo) [___dZD(p) ‘ l"““”] (1)

o 2k%%2 0 dp? p dp

where k = free space RF wave number.

Ag and I(p) depend on the aperture design taper or weighting
and are calculated from equations (B4), and (B10) respectively. D(p) is
2 the phase structure function evaluated at the antenna aperture as a func-
tion of distance (p) transverse to the propagation path.

P POMER SPECTRAL DENSITY FUNCTION

We assume a power spectral density (PSD) which is locally homo-
: geneous and isotropic and an index of refraction variance which is a
1 function of altitude.

L LO3 r(N/2)

¢n(K,Z)

m2(2) (2)
w2 p(N2-372) (L A2V

Eid 4

= o7(K) an?(2) (3)
where
3 on(K,Z) = PSD of index of refraction fluctuations
g an%(Z) = index of refraction variance of the air-dust medium as

a function of altitude

Lo = outer scale of turbulence
= spatial wave number

N = 3-D power law exponent.




Using equation (3) and equations (1.50) and (8.11) from Refer-
ence 2, D(p) may be expressed as

Do) = 4n2 K2 [ &K K [1-3,(Ke) ] €2(K) (4)
0
. K2(L-x"), ]
« [ dX* an?(X') {l+cos [ 2]
0 k f

where Jo(Kp) = Bessel function of the first kind of zero order, and the
integration in X' is over the propagation path from the layer boundary to
the antenna at slant range L away. (See Figure 1)

Makina a change of variables from X' to X such that X = L-X' and
using

2
d JO(Kp) 1 dJo(Kp)

dp? o do

= 2
= =K JO(Kp)s

we may differentiate D(p) to obtain

2 - -]
90(p) 4 1 Do) - g2z [ gk k3 3 (Ko) O(K) (5)
dp2 o dp 0
:
L K 2X ]
« [ dX an?3(X) [1 + cos (=2))
3 o] k
3 ]
4 Here the integration in X is from the antenna to the layer boundary.
R Substituting (5) into (1) we obtain
2 2n3 R ® 3 ,0
o “=— [ dooI(p) [ dKK>e/(K) J (Ko) H(K) (6)
a A2 o 0 n 0
e




where
L
HK) = [ dX an?(X) [L + cos(K_ix]] . (7)
0

LOADING PROFILES

Let the target elevation angle be ¢ with ¢ = csc(e), and the
antenna height Zp. For uniform loading over the layer
L K2x k K2L
H(K) = an2 [ dX [1+ cos(==)] = an2 L[l + — sin(——)]

(8)
0 k ou K2L k

where L = C(ZL-ZR), and ZL is the height of the dust layer.

For exponential loading

* -27/h 2
HK) = an2 ¢ [ dze S [1+ cos (K25
Zn k
K2Zg KZzh . K2zZ
2 cos - S) sin R
- Moe Chs e'zzR/hs 1+ ( Kk ) - | 2k ) [ k ) (9)
2
2k

where the mean and also the root-mean-square deviation in the index of
refraction are assumed to vary as exp(—Z/hS) so that Ane2 varies as
exp(-2Z/hg). Anouz and Anoe2 in equations (8) and (9) are, respec-
tively, the index of refraction variances in the dust laden air medium for
the uniform and exponential layers at zero altitude.

VARIANCE OF THE INDEX OF REFRACTION OF THE MEDIUM

Following Reference 3, we assume that the mean value for the in-
dex of refraction of the medium is given by the Clausius-Mossotti formula

B P PR o L ™ aad
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n=1tn, = 1+3

2
2 nb +2 G

and that the root-mean-square deviation in n 1is equal to 1/2 of n,
An =1/2 n, . (11)

Here np is the index of refraction of the bulk material which can be
closely approximated by using its real part only. % Pp are the densi-
ties of the medium and bulk material, respectively. The assumption an =
1/2 n, corresponds to the worst case situation, which is expected at early
times after the pedestal cloud has formed. As the turbulent energy in the
cloud is transferred into heat, the factor of 1/2 will eventually become

much smaller.
Substituting (10) into (11) we obtain

n 2-1 [
an =3/ | P _n (12)

2
Tt ) ey,

This may be restated in a convenient form by making use of the fact that
pm is generated by a scoured layer of thickness aZ of the bulk material
whose density is pp. Then for uniform loading

n, 2-1

gy <3 () & 1)
4 \ny*2 ) 7,
and for exponential loading
2
n <-1
i, =2 (2 )& : (1a)
4 \n 242 ] h

b




The variance of the index of refraction of the medium is then obtained by
taking the square of (13) or (14) as desired.

WORKING EQUATION

The parametric investigation was performed through the evalua-
tion of equation (6) which we restate by substituting for ¢g from equation

(2)
24372 L03 r(N/2) 2R ® N/2
o 2= x [ do o I(p) [ dK K3 J (Ke) H(K) (14 %2)
A2 T(N/2 - 3/2) o 0
(15)
; where Ay, and I(p) are given by equations (B12) through (B17) and H(K) is

taken from (8) or (9) as desired. The two integrations in equation (15)
were computed numerically.
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RESULTS

A 1list of parameters affecting the angle-of-arrival problem
which have been studied is given below. Note there are two parameters
(antenna aperture illumination, radar height) which the designer could
possibly control. (Changing the environment by relocating the radar site
or by modifying the terrain from which the dust is 1lofted are other
obvious considerations.)

» CHARACTERIZATION OF THE ENVIRONMENT |

- PSD
Turbulence Outer Scale Size (L,) )

3-D Power Law Exponent (N)
Bulk Index of Refraction (np) )

- Dust Loading Profile
Uniform
Exponential
Scoured Layer Removed (aZ)
» RADAR OPERATION

- Antenna Aperture Effects (I1lumination Functions)

- Target Elevation (8), Radar Height (Zg)




NOMINAL CASE

Unless otherwise specified, we assume the following nominal
conditions:

Exponential loading, hg = 6 m

2 cm of caliche scoured (n, = 2.2)
Kolmogorov spectrum, N = 11/3

Lo = 10m, 8 = 90°

Uniform aperture illumination
Radar height, Zp = O0m

For these conditions we find 0y = 1.7 mrad.
VARIATIONS ABOUT THE NOMINAL

Figure 2 demonstrates the variation in o, with outer scale and
the 3-D power law exponent of the PSD for an exponentially loaded layer.
Variations in Oy attributable to uncertainty in L0 can approach factors of
+ 2 for 1<Ly<100 m for a given N. For a fixed choice of outer scale, a

variation in N from 3 to 5 can produce variations of + /3 in Oge

Figure 3 is a repeat of Figure 2 except that the 2 cm of scoured
caliche has been distributed uniformly over a 100 m layer. It is observed
that the values of o, predicted for the uniform layer are about a factor
of 3 smaller than for the exponential layer with a 6 m scale height. This
can be explained as follows. Let the mean turbule diameter for a given L0
and N be equal to d. Then in traversing a layer thickness Z, oa2 will be
proportional to the variance in the index of refraction for an average
turbule (an2) times the number of turbules passed (m). Thus

o 2 Anzm

au _“u u (16)
o 2 an 2 m
a,e e e

L e
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where the subscripts u and e refer to uniform and exponential respec-
tively. For a constant layer m, = ZL/d and for an exponential layer m, =
hg/d. Also, referring to equations (13) and (14)

an 2 h?2
“2 ~ _5_2_ ) (17)
Ane ZL
Then
o h 2z {h
a,u ~ Sz h = —E‘ - l R (18)
°a,e ZL hS ZL 4

approximating the numerical result of 1/3 quoted earlier. The results for
the uniform layer have been compared with a previous result published by
Thompson in Reference 4. They are found to be in excellent agreement when
the differences in the scoured layers assumed are taken into account.

In Figure 4 we have investigated variations of o, with scale
height for exponential loading. The increase in o, with decreasing
scale height may be explained by the same reasoning as was used above to
compare the results for the uniform and exponential layers. The variation
of hg about the nominal 6 m value results in fluctuations of a factor of
= 0.5 to 1.7 in q,.

Figure 5 shows the effects of target elevation and also radar
height on o,. For a decrease in target elevation from the nominal case
of 90° down to 15° we see a factor of about 2 increase in o,. This rise
results from an increase in path length through the dust with decreasing
look angle. For a fixed target elevation and our nominal 6 m dust scale
height, we note a decrease in o, by a factor of = .7 when the antenna
face is lifted 2 m above the ground. This decrease in o, is caused simply
by the fact that a large quantity of the former propagation en:ironment is
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now below the antenna and has no effect. It should be realized that for
smaller scale heights this factor would become more significant, and for
large scale heights the effect of a 2 m radar height would be negligible.

i The three separate aperture amplitude design tapers are plotted
in Figure 6, with their corresponding peak sidelobe levels also listed for
‘ reference. The resultant variations in o  as a function of design taper
f and outer scale are shown in Figure 7. It is seen that with increasing
k amplitude taper, corresponding to greater sidelobe suppression, there
results an increase in o,.  Thus there exists a tradeoff between
i sidelobe suppression and angle of arrival jitter. The peak increase in
o, is a factor of =~ 1.6. This increase occurs because a tapered
aperture gives lower sidelobes at the expense of a somewhat broader beam
and a broader beam in space Tlets in rays from a wider range of angles.

The possible significance of this effect remains to be investigated.

il

The effect of varying material properties when the scoured layer
thickness is held constant is obtained directly from equation (13) or (14)

] np2-1
~ - b

Table 1 lists the bulk indices of refraction and resulting variations in
(nbz-l)/(nb2+2) for representative materials of interest. We note a
resultant factor of ~ .6 to 1.4 in ¢, about the nominal case.

Table 1. Material Variations. (From Gutsche's data, Reference 5.)

Material n 29221
b np“+2
]
i Dry, sandy soil 1.58 .33
* Caliche 2.20 .56
Wet Clay 3.34 g7

* Nominal Case
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CONCLUSIONS

Results are summarized in Table 2. It is seen that for the
nominal conditions of 2 cm of scoured surface we predict about 2 mrad of
jitter. However, notice that o, is directly proportional to the amount

of surface removed and this quantity is highly uncertain. Variations in

other quantities lead to factors of = %2 about the nominal case. In addi-
tion, with specially selected (worst case) parameter variations, as much
as 10 mrad of jitter is possible with the 2 cm of scoured surface.

It is appropriate to consider the amount of signal attenuation
predicted for this dust loading. From Reference 5, Figure 1 we note that
for 2 cm of surface removed, there is less than 15 dB of 2-way signal
attenuation for the worst case combinations of material composition and
its size distribution in the medium. Thus, a couple of milliradians of
jitter may be possible under conditions for which attenuation is not
severe.




Table 2.

Results.

VARIATIONS RELATIVE TO NOMINAL CASE

QUANTITY VARIED

PSD

Material properties
Scale Height
Radar Height

Target Elevation

ca(nom) = 1.7 mrad

Loading (scoured layer removed)

o, (min)

Oy (nom)

.3

.6
5
7
1.0

o, (max)

o, (nom)

1.4

Directly Proportional

1.4
1.7
1.0
2.0

TRADEOFF BETWEEN SIDELOBE SUPPRESSION AND JITTER

21

'
¢ s —#e A el




REFERENCES

Tatarskii, V. I., The Effects of the Turbulent Atmosphere on Wave

Propagation, TT-68-50464, National Science” Foundation, Washington,
0.C., 197T.

Tatarskii, V. I., Wave Propagation in a Turbulent Medium, McGraw Hill,
New York, 1961.

"Communication Degradation Issues Relevant to a Massive Attack
Environment," Mission Research Corporation, Unpublished.

Thompson, J. H., "Sensitivity of Dust Propagation Effects in a Nuclear
Pedestal Region," Kaman Tempo, April 1981.

Gutsche S. L., "X-Band Attenuation From a Nuclear Dust Cloud Pedestal:
Bounding Calculations and Determination of Sensitivity to Key
Parameters,” MRC-N-464, Mission Research Corporation, May 1981.

Ishimaru, A. K., Wave Propagation and Scattering in Random Media;

Volume 2, Multiple Scatfering, Turbulence, Rough Surfaces and Remote

sensing, Academic Press, 1978.

22




~

APPENDIX A
JUSTIFICATION FOR THE USE OF WEAK SCATTER THEORY

The formalism which has been developed utilizes results from
weak scatter theory. According to Reference 6 weak fluctuation theory is
valid when the log-amplitude variance is less than about .2 to .5. For
the case of a Kolmogorov spectrum, the log-amplitude variance is given by

2,7/6, 11/6
0,2 = 586 ATk "L
X L 23

0

(A1)

for uniform loading and a path length L. We approximate the nraminal
exponential layer (hg = 6 m) by a uniform layer of heigar - m. .a¢ is
taken to correspond to that at ground level for the nominal conditions.
This should yield a conservative estimate. Then

L = 6m
Lo = 10 m
k = (2n/.03)m"!
2_
w e 2 (22 o
4 \2.22+2 6
and
2 . -3
Oy 3.4 10

This is two orders of magnitude smaller than the value for which weak
fluctuation theory breaks down. It is safe to assume that ox2 will be
smaller than .2 for all cases we have considered, so that the use of weak

scatter theory is justified.
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APPENDIX B

ANGLE OF ARRIVAL FLUCTUATIONS FOR AN ANTENNA
WITH A TAPERED APERTURE AMPLITUDE DESIGN

As stated earlier, we have assumed that the relevant angle
estimator is that of the angular coordinates of the "center of gravity" of
the intensity pattern of the target image in the focal plane of the
antenna. Following Tatarskiil, the angular deflection of the center of
gravity of the image (in one plane only) is given by

oo = o 1 [uln'e) PL2E) p(ne g jaetan
z '

U (81)
JI Jelnts &) [ FE(nt, 80) dn'des

where
k = free space RF wave number
v(n',£') = scattered field at the antenna aperture in the Rytov
approximation
F(n',g') = antenna aperture amplitude design taper
L = aperture area

(This may be obtained from Reference 1 page 287, equation (13) by letting
wFy.)

Letting v = Ay exp(X+iS), where

>
"

log-amplitude of the scattered field
phase of the scattered field

w
]

we may write equation (Bl) as

25




[] F2(n',€")exp(2X) EELDLLEL)dn-dgn
ag =Lk an’ (82)
vk [] F3(n',g")exp(2X) dn'de’
b

It is seen in equation (B2) that the main contribution to %
is from phase fluctuations since oy = 0 for S = constant. Then to first
order we may neglect the effect of ampliitude fluctuations and

ag = —2 f F2(nt,er) BLED) g (83)
KA I an'
e
where
Re = "effective area"
= [[ F2(n',£")dn'de’ : (B4)
T

The mean squared deviation in a is then

2 - <a02>

Q
Q
!

1
k2A

[ Jf P2t e P2, gy 20 aE1) DMLY

2 ' "
I L 3
e n am

dn'di'dn"d{" . (BS)

The expectation of the phase derivatives may be written in terms
of the phase structure function as

AS(n',6') aS(n",£"), _ 92

<S(n',g') S(n",€")>
an' an" an' an"
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32 32
= B(“l_n“, gl_g") = - B(nl-n"’gl_gu)
anlanll anl 2
2
-1 0 D(n'-n",g'-€") (B6)
2 3n'?

where it is assumed that the phase correlation function B and the phase
structure function D depend only on the distance between the points
(n',g') and (n",£"). Substituting (B6) into (B5), we may write

[¢]

2 [N TRy B 1
2 _ 1 3 D(n n,& -§ ) FZ(nu’Eu) FZ(H",E")
A SN an'2

dn'dg'dn"dg" . (B7)

We now make a change of variable from (n",£") to (n,£) such that n =

n'-n", £ = £'-£". Keeping in mind that the area I is a circular aperture
of radius R,

o2 = _} /] dndg 320(n, £)

© 222 / n2+e2 <2R an2

. IJ dn'dg! Fz(“lsgl) FZ(“l'ns£|'g) . (B8)
z

Changing to polar coordinates (p,¢) and assuming that the structure func-
tion is locally isotropic so that

D ( /n?+g2) and

D(H,E)

32D(p) _ n? d2D(p) , &2 dD(p)

an? 02 dp? pd dp

1
(]
[e]
wn

N
N
~N
+
w
-
3

de [ do
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we obtain
2R 2w 2
0 2= 1 [ do o [ d¢ [cosZg E_Eiﬁl + 1 sin?y Egiﬂl] I(p) (89)
® k2o 0 do2 o dp
where f
I{(p) = "illumination function" }

“Uo/R) R J——
?os o do | do'e' F2(p') F2[ /(3'-3)2 ] . (B10)

0 p/2cos6

Performing the integration over ¢ in equation (B9) we have

2R 2 j
! e 2=_"_ ( dp o I(p) [d D(p) 41 dble) ] . (811)
a 2k2Ae2 0 dp? P de

The geometry for the integration of equation (B10) is shown in
Figure Bl. We evaluate equations (B4) and (B10) for 3 separate amplitude

tapers* )€
}
Case 1: '
F(p) = 1
A, = nR2 (812)
I(p) = 2R? [cos~!(p/2R) - (p/2R) ¥/ 1-pZ/R7) (813)

* I(p) was evaluated analytically for Case 1, and numerically for Cases
2 and 3. For Cases 2 and 3 I(p) was then expressed in terms of poly-
nomial expansions through use of a curve fitting routine.
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Figure Bl. Geometry for the integration of equation (B8l10).




R(p) = 1-p2/R2

Ae = 7R2/3 (B14)
I{p) = R? [A2+B,(p/R) + Cz(pz/Rz) + Dz(p3/R3)

+ Eo(p%/RY) + Fo(p5/R5)] (B15)
Case 3

F(p) = (1-p2/R?)2

A, = 1R%/5 (B16)
I(p) = R2 [A3+B3(p/R + C3(DZ/R2) + 03(03/R3)
+ E3(p"/R*) + F3(p°/R3)] (B17)
where
A, = .6220536
B, = .1518489
C, = -1.859473
D, = 1.699667
E, = -.5666203
F, = .06177243
Ay = .3845954
B, = .1363949
C; = -1.785527
D, = 2.168312 ;
€, = -1.01252 |
Fy = .1681695 ]
1
The unitless form I(p)Rz/Ae2 is plotted for Cases 1, 2 and 3 Ai

in Figure B2.
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Figure B2. I(p)R2/Ag2 vs p/R for three aperture design tapers.
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